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NON-STATIONARY SUPERSONIC MOTION OF A COMPLEX DISCONTINUITY* 

A.S. BYKOVTSEV and D.B. KPAMAROVSKII 

An exact analytic solution is constructed for the non-stationary plane 
problem of a fracture area starting at supersonic speed on which a 
complex fracture process (shear with cleavage) is given. To describe 
the fracture process occurring at the discontinuity, a kinematic 
approach is used for which the magnitude and direction of the 
dislocation vector on the discontinuity are given on the whole fracture 
area as a boundary condition. Laplace and Fourier transforms are used 
to obtain the solution, and the Cagniard-de Hoop method is used to 
invert the solution. Singularities of the displacement fields are 
investigated in the elastic and shock waves that occur in the supersonic 
motion of the discontinuity, and a detailed analysis is given of the 
solutions obtained. 

Stationary problems on the propagation of slits for a range of velocities lying between 
the shear wave and compressional wave velocities /l-3/ as well as problems on the supersonic 
cleavage of an elastic and elastic-plastic medium /4-71 were examined in investigating 
fracture processes occurring at velocities exceeding the velocity of elastic wave propagation 
in the medium. Despite the significant number of papers devoted to the dynamics of 
discontinuities, the question of the displacement fields originating for a discontinuity 
propagating non-stationarily at a supersonic velocity has not been investigated in practice. 
The main purpose of this paper is to obtain and analyse wave fields for a dislocation 
discontinuity starting at a supersonic velocity. An analysis of wave fields for subsonic 
propagation velocities of dislocation discontinuities is given in /8-13/. 

1. Formulation of the problem. Let a generalized dislocation discontinuity on which a 
constant jump of the displacement vector [U (U,, U,,U,)l= B (B,, B,,B,) = const is given (the 
left end of the discontinuity is at rest and coincides with the z axis) start be propagate at 

a constant velocity v from the origin of a Cartesian system of coordinates xyz along the 
positive direction of the I axis in a homogeneous elastic isotropic medium at an initial time 
t=O. We will assume that the discontinuity starts at a supersonic velocity, i.e.,u>+> 

es (CP and c, are the longitudinal and transverse wave velocities), while the dimension 
of the discontinuity along the z axis is quite large (the plane problem; the z 
axis is perpendicular to the plane, Fig.1). The initial conditions are zero, and the medium 
is at rest at infinity. 

The generalized dislocation discontinuity can be represented in 

Y discon- 
R. 

/ 

the form of the sum of shear, cleavage, and antiplane shear 
tinuities. Then we have at the upper edge of the discontinuity for 
y=o: 

For the shear discontinuity 

I / U, = ‘/J&H (I) H (t - XII-~), Q, = 0 

IX u 
e --t For the cleavage discontinuity 

U, = 'I,B,H (x) H (t - XV-~), a,, = 0 

(I,11 

(1.2) 

For the antiplane shear discontinuity 

Fig.1 U, = '1,&H (x) H it - xv-') (1.3) 

where H is the Heaviside unit function. The displacements on the lower edge of the discon- 
tinuity have the same magnitude but opposite sign. 

The problem of determining the wave field being generated by a dislocation discontinuity 
starting at a supersonic velocity reduces to solving a system of equations for the potentials 
'p and 0 as well as for components U, that have the form 

cp,XX + 'P,nv = c&", $,*z + $',I&+ = c&,", u,,.. + u,.,, = CTW," (1.4) 
(under given boundary conditions (l.l)-(1.3) and zero initial conditions), where the comma 

before a subscript denotes the derivative with respect to the corresponding coordinate while 
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the dot denotes the derivative with respect to time. 
The potentials cp and 9 are connected with the components of the displacement vector 

by the relationships 

~,==cp.~+~.,~ u,=rp.,-9.z (1.5) 

The components of the stress tensor are defined as follows: 

(Jij = hUk.k’%j f p((ui.j + uj#i) (1.9 

where 6,, is the Kronecker delta and h and u are Lame constants. 

2. Construction of the solution. We will obtain the solution of this problem by applying 
Laplace and Fourier transformations 

(2.2) 

fs (5, Y, t) = & f f (+, Y, t) exp (- i&z) dx 
-0J 

and using the Cagniard-de Hoop method to invert the sol_ution. 
Applying the transformation (2.1) to (1.4) and (1.5) we obtain 

CPU = Cexp (--YnJ, %F = Crexp (-Yn8) 
U%LP = Wexp (--ynp) - Gn, exp (-d 

UW.F = -CCn,exp (-ynp) - iEC,exp (-ynJ 

u ZLF = c, exp (-yn*); n;,, = kq, + E* 

Applying the transformation (2.1) alternately to (l.l)-(1.3) and taking account of (2.2) 
we obtain systems of linear algebraic equations to determine the unknown constants C, CI, C,. 
From these systems we find: 

for the shear discontinuity 

C = A&&.2& C, = -AI& (k%-2 + 2g2) n,-1 

for the cleavage discontinuity 

C = --A$, (kacs-* + 2E*) rq-l, C, = --A,B,.2i~ 

A, = csa [2kS f%(ku-1 + is)]-’ 

for the antiplane shear discont,inuity 

C, = B, [2 l/z k.(ku-1 + it)]-’ 

Substituting the values found for C,C, and C, into (2.2), we obtain, after making 
the replacement of variables, E = -ikPc,-1 and applying the inverse Fourier transformation 

ufy = - i 
im FP.SdP 

4nkfi’ s 
-is 

-,&- exp [kc;l(Px - ymp,s)J (2.3~ 

i=x,y,z, m&=B~.S-pa, y = cp, BP = 1, p, = p = c&I 

for the shear discontinuity 

F p = x 2B P2 x I F,” = B, (fY - 2P2) 

FP=-2BP v x mp7 F,’ = B,P (fi” - 2P*) m;’ 

for the cleavage discontinuity 

and for the antiplane 

Expression (2.3) 

FxP = -B,P (pa - 2Pz) mp-l, F,’ = 2B,Pm, 

FvP = B, (p” - 2P2), Fy’ = 2B,P2 

shear discontinuity F,” = B,f?; the remaining values of Fqs8 equal zero. 

in the time domain is inverted by the Cagniard method /14/. We define 
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the Cagniard contour as follows 

t = - (PX - ym,,J cp-' 

We then obtain 

P=--zcosOfiT,,,sinO, m,,a=7sin9r+iT,,,cos0 (2.4) 

T;, 8 = + - p;, 111 z = tcpl?-‘, IP = a? + &!a, tg 8 = y/x 

The first of relationships (2.4) determines the branch of a hyperbola in the complex P 
plane for T> BP, (Fig.2). Part of the contour I';,, corresponds to the plus sign in (2.4) 

while I',,, corresponds to the minus sign. For 2< BP,8 the Cagniard contour coincides 
with the axis Re P (this part of the contour is not shown in Fig.21. 

We pass from integration over the imaginary axis to 

ImP 
integration over the closed contour (Fig.2). The singularities 
of the integrand in (2.3) are the branch points p = +&%a 
and the pole P = --y. The branch points lie outside the 
Cagniard contour. The location of the pole P = --y (y = CPU“) 
is determined by the magnitude of the velocity of discontinuity 
propagation. It follows from the first relationship of (2.4) 

RCP 
that the pole lies outside the Cagniard contour for subsonic 
values of the velocity U while the pole lies within the con- 

Fig.2 

s, Ps tour for supersonic values of v for points with coordinates 

Usihg the theorem on residues and taking into account 
that the integrals along I'" equal zero according to the 
Jordan lemma, as well as the fact that the integrand in (2.3) 
has an even real part and an odd imaginary part, we arrive at 
the relationship (Or;" is the residue at the pole P = -y) 

FYmp s 

P + V) T;, $ 

exp(- kt)dt] 

07;‘;” = l/zk-lfl-aFf’Sexp [kcp’(- yx - ymp,,)] H (J - xp,J 

(2.6). 

where P is replaced by -_y in the quantities Fr” and mp,a in the last expression in 

(2.5), and this expression is itself tabulated for the Laplace transform. The expression My;" 

is the direct Laplace transform of the integrand in the exponential. 
Taking account of the properties of the Laplace transform /15/, we obtain 

M"'" _ --C"-~e , 27$YR [ 

F?'"m 

P&9 g;,* 1 H(~--b,s) 
Of’*’ = l/,p-aF$‘S”H (t - tp,s) H (I - xp,a) 

t p,s = (x + y 1/B2p,6y-2 - f)/v 

Relationship (2.6) can be integrated analytically and we represent the final result in 
the following form: 

U," = AB,pa arcls H, + 0,” 
Uxn - A {B, [2y* arclp - F,] + B,[!f + P3*)lnP - 

Bs2YYP1 arcZP + f,]} H, + D,‘, U,” = A (B, [F, - fi,” arc,'] - 

B,[B,21n* + ~YY, arc2' + f,l) H, + D,* 
UVp = A [B, [(2y2 - 1) W + 2yy, arcZP + f,] + 

B, [F, -- &’ arc,P]) H, + DVp, U,’ = A (B, [fJs2yyT1 arc2' - 2y2 Ins - f,] -+ 
B, [2yz arcIS - FJ}l~, + D,' 

F p, 8 = (Z sin 26 + 2y sin 0) T,, S, fp. S, = (z cos 26 + 2y cos 0) Tp. s, 

(2.71 
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fJS” = 2y2 - pa, A = Il(2n~z) 

for subsonic values of u 

1’p.s = l/iwL, Dp'" = 0 (j = x, y, z) 

for supersonic values of V 

(2.8) 

(2.9) 

Dz” = ‘I&H,,; H,, 31 = H 0 - t,, s) H (x - xp,s) 

arc$' = arcsin T,, FYP. s 

B,,, (/(T--ceos8)"+y~,,sio"R 

3. Analysis of the results. The solutions (2.7) for subsonic values of v agree with the 
solutions obtained by the method of functionally invariant Smirnov-Sobolev solutions /S/. The 
appearance of the quantities 07'" in the solutions corresponds to supersonic propagation of 
the discontinuity. The part of the solution (2.7) corresponding to subsonic (supersonic) 
motion of the discontinuity is used for the P-waves (S-waves) for transonic motion of the 
discontinuity (c, < u< cJ. 

The domain of action of the supersonic solution is determined by the unit functions 
H (t - &..I and H (5 - +,s) in (2.6). This domain is bounded by the lines t,, t, and g, 5,. 
The lines zp and x, make angles 'pp = arccos y and I& = arccos (v/p) respectively with the z 
axis. Consequently, the general wave pattern will consist of circular domains representing 
the longitudinal and tranverse wave fronts and conelike domains bounded by the lines tp, t, 
and +, z& due to supersonic motion of the discontinuity (Fig.3). The surface t,, 8 can also 

be considered as plane waves existing in the domain x > %* and propagating along the rays 

XP. 8 while the wave surfaces IJ = ljP,S exist in all space. 
We will investigate the quantities 0;” defined by 

(2.6) in greater detail. For a shear discontinuity these 

:;:*A 

quantities equal the first component of the expressions for 

zc&nd ~~m~~n~6;. 

for the cleavage discontinuity it is the 

and for the antiplane shear discontinuity 
the quantrty 0:’ is defined in (2.9). The quantities 
mentioned depend only on the ratio between the bulk wave 
velocities and the velocity of discontinuity and are in- 
dependent of the time and coordinates of the observation 

Fig.3 
point, which corresponds to a jump in the solution (2.7) for 
supersonic values of U. The domain x > .%,s is character- 
ized by the fact that perturbations caused by the supersonic 
motion of the discontinuity arrive first at points of this 

part of space, and then the bulk elastic waves arrive. Only elastic waves arrive at points 
of the domain I< zp,s (Fig.3). 

The direction of the jump in the displacement for a conelike "supersonic" surface (SS) in 
the P-waves is perpendicular to the coniaal wave front (the line AB, Fig.3), and in the S- 
waves is parallel to the conical front (the line AC, Fig.3). The direction of the displacement 
jump for the antiplane shear discontinuity is perpendicular to the plane of Fig.3, while the 
magnitude of the displacement jump depends on neither the ratio between the bulk wave velocities 
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nor the velocity of spread of the discontinuity. 
Under practical conditions the discontinuities being propagated are usually a complex 

combination of shear and cleavage discontinuities. Consequently, from the viewpoint of 

practical applications, it is interesting to analyse the displacement fields within the cone- 
like "supersonic VT domain as a function of the magnitudes of the cleavage and shear components 
of the displacement vector at the discontinuity, as well as on the velocity of spread of the 
discontinuity. Determining the total mangitude of the jumps DQ and D'in P- and S-waves for 
the domain mentioned we obtain for a complex discontinuity (B, = B cos a, B, = B sin a, B, = 0) 

Dp = yBfi-a(cosa + 6, sina) H,,, D' = yB/3-*(6, cosa - sina) H,, (3.1) 

gp= P--YS 6 = fJ*-w 
2yvm-- 8 33 lo* - YP 

It is seen that the magnitudes of the displacement jumps in the P- and S-waves for a 
complex discontinuity depend very much on the angle a (a = arctg (BJB,)), that the dislocation 
vector at the discontinuity makes with the plane of the discontinuity, (i.e., on the relation- 
ship between the shear and cleavage components of the displacement vector at the discontinuity), 
as well as on the velocity of spread of the discontinuity 

Let us examine the following two ranges of variation of this angle O,< aQni2 and n/2< 
a< n in greater detail. 

For O< a< n/2 the direction of the shear component of the displacement vector at the 
upper edge of the discontinuity coincides with the direction of spread of the moving edge of 
the discontinuity. In this case the jumps in the displacement behind the SS in the P-waves 
are directed to one side for pure shear and pure cleavage discontinuities. Consequently, the 
maximum amplitude of the displacements in the P-wave will reach a value of 

for a complex discontinuity for 0 < a < nl2 and a = a&, = arctg 6,. 

The displacement jumps for the SS in the S-waves are parallel to the conical front and 
are directed for O< a < n/2 to different sides for the pure shear and pure cleavage dis- 
continuities (from C to A and from A to C, respectively, in Fig.3). Consequently, for a= 

aos = arctg 6, we obtain Do" = 0, i.e., despite the supersonic motion of the discontinuity, 
for a = ao8 there will be no S-wave SS and S-wave radiation will be analogous to that 
occuring for subsonic motion of the discontinuity. 

For n/2< a< n the direction of the shear component of the displacement vector at the 
discontinuity is opposite to the direction of spread of the moving edge of the discontinuity. 
In this case the displacement jumps behind the SS front in P-waves are directed to different 
sides for pure shear and pure cleavage discontinuities and we obtain Do" =O for a =aop = 

n/2 + a& i.e., despite the supersonic motion of the discontinuity, for a = sop there will 

be no P-wave SS and the wave pattern of P-wave radiation will be analogous to that occurring 
for subsonic motion of the discontinuity. 

For ni2 < a < n the displacement waves for S-wave SS are directed to one side for pure 
cleavage and pure shear discontinuities. Consequently, the maximum value of the displacement 
in S-waves for a complex discontinuity for nl2< a< n will reach a value of 

D;,, = '/AWrB" (3.3) 

for a = a,:, = ni2 + aos. 

Graphs of the functions D" and DS,respectively, are presented in Figs.4a and b in a 
polar system of coordinates as a function of the angle variations a (0 Q a < n) for dif- 
ferent values of the velocity of spread of the discontinuity (curves 1, 2, 3 correspond to the 
values y = 0.2, 0.83, 0.95 for fl = 1.9 (chalk) and B = 1. The solid lines correspond to 
positive values of DP.8 

the function Dp reach maxiia 
and the dashed lines correspond to negative values). Values of 
Dg,, = 0.5, 0.61, 0.85 for a:,, = 80, 60, 67" (for curves 1, 2, 3, 

respectively). The absolute values of the function D" reach the maxima D&,, = 0.5, 0.53, 0.58 

for akau = 165, 127, 113" (the directions in which the functions Dpss 

vanish are denoted by dashed sections in Figs.4a and b). 

reach the maxima and 

The dependences of the values of the angles a on the velocity of spread of the discon- 
tinuity for which a maximum is reached (the solid lines) and there are no SS (the dashed lines) 
in the P-wave (Fig.5a) and the S-wave (Fig.5b) are presented in Fig.5 (curves 1, 2, 3 cor- 
respond to values of p of 1.7 (granite), 1.9 (chalk), and 2.44 (clay shale)). For P-waves 
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these curves have a minimum for y* = B I2 (B" 
n/2 + a,*. 

I)]-"* where a,* = arctg (/z? ]'fi" - 2) and a%* = 

a Fig.4 

f 
I 

” 2, 
=I m ___-_------ 

0 r* v 
a Fig.5 

0 (I_ 2712 cc+ n 

Fig.6 

b 

Analogous curves for the S-waves (Fig.5b) have no extremum point and the values of the 
angles for which the maximum is achieved vary montonically from n to zero as y changes from 
zero to p. Values of the angles aso for which there is no displacement jump in the S-waves 

vary from n/2 
<Y<B- 

for y = 0 to zero for y = o/r/2 and from n to n/2 as the changefi/@ 

We know from an analysis of the radiation patterns of seismic radiation in P- and S-waves 
/%, 9, ll-13/ for a discontinuity propagating at the velocity v< e, < cp that, as a rule, the 
absolute magnitude of the displacement amplitude in S-waves exceeds by an order the magnitude 
of the displacement amplitude in P-waves. The orders of magnitude of displacements behind the 
SS front in P-.and S-waves are identical for supersonic motion of a discontinuity with velocity 
v> cp > c, . 

Absolute values of the displacement amplitudes Dp (the solid lines) and D” (the dashes) 
are shown in Fig.6 for different values of y (curves 1, 2, 3, correspond to the values y = 0.2; 
0.83, 0.95 for fl = 1.9). It follows from an analysis of Fig.6 as well as of (3.1) that the 
absolute value of the displacement jump in P-waves will be greater than the displacement jump 
in S-waves for a > a- and a < a+ where 

a* = arctg [(p& * l)i(B f &)I 

and for a <a_ and a > a+ the absolute value of the displacement jump in S-waves is 
greater than the magnitude of the jump in P-waves. 

The dependences of the change in the angles a_ and a+ on the velocity of spread of the 
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discontinuity (7 = cpIv) are shown in Fig.7 for i3 = 1.7, 1.9, 2.44. The parameter a+ varies 
between 3nl4 and zero as y changes between zero and one. The magnitude of the angle a_ 

for materials with the value p > 1.926 changes between xl4 and zero for O<y< 1 and 

for materials with the value' $ cl.926 between n/4 and zero for 0 < y < [‘/JY (1 - (pa + 1)-‘/*]‘I. = 

YO. 
A jump by n occurs in the function a_ for Y = Yo (Fig.7). 
It follows from,(3.2) and (3.3) that as D+ 00 (Y-0) the maximum value of the displace- 

ment jump D,,$? = B/2 will be reached behind the SS front in the P-wave for a pure cleavage 

discontinuity, i.e., for a = n/2. In the S-wave the maximum magnitude of the displacement 
jump D&,, = B/2 will occur for a pure shear discontinuity, i.e., for a=O,a=:n,v+oo. As 

Y * 1 (v-+- cp) and y-+ b (v+c,) the quantities Dg,, and L&X, respectively, tend to 

infinity, but the domains in which they take very large values shrink to a point, since the 
angles 'pp = arccos y and cps = arccos(y@) (Fig.3) become infinitesimal. 

It -should be noted that the solutions (2.7)-(2.9) constructed are obtained under the 
condition that the vector B = const . Consequently, they are a certain mathematical ideal- 
ization of actual physical processes. For a more practical simulation of the physical processes 
on the surface of discontinuity, the dislocation vector should be given in the form of a 
certain function which depends on the coordinates and time. On the basis of the linearity of 
the fundamental equations the solution of the problem with an arbitrary dislocation vector on 
the discontinuity can be obtained by applying the convolution operation to the solutions (2.7)- 
(2.9) constructed. Consequently, by considering (2.7)-(2.9) as solutions obtained in general- 
ized functions, they can be utilized effectively to construct the solutions of a number of 
more-general problems. 

The question of whether or not the deductions made on the basis of the solution obtained 
are conserved after applying the convolution operation is of interest. In our opinion, 
qualitative effects associated with the behaviour of the radiation pattern of seismic radiation 
on a conelike surface caused by the supersonic motion of a discontinuity are conserved. 

The solution of the problem when a constant velocity jump is given on the discontinuity 
can be considered as an example. Then the surface of discontinuity will have the shape of a 
thin wedge and the dislocation vector B, on the discontinuity will depend linearly on the 
time t. In this case the velocity field will be given by (2.7)-(2-g) and the solutions (2.7)- 
(2.9) should be integrated over the time t to obtain the total displacement field. Therefore, 
the displacement field in the problem of the supersonic motion of a discontinuity with a 
constant velocity jump can be represented in the form 

where lJ$" are functions from the relationships (2.7) that stand for the unit functions Hp.*; 

Df’” are determined in (2.7) and (2.9), t0p,s are the arrival times of the bulk P- and S- 
waves at the observation point, and tp,s is the arrival time of the "supersonic" waves at the 
observation point. 

Analysis of the results obtained indicates that the solution in the "supersonic" domain 
is already determined by smooth functions without discontinuities and which depend linearly 
on the time. The nature of the behaviour of this solution is the same as the solutions (2.7)- 
(2.9), i.e., the deduction made on the basis of an analysis of the results in (2.7)-(2.9) are 
conserved in general. T.he distinction will be that for Figs.4 and 6 it is necessary to 
indicate at precisely what times these graphs have been constructed. 

Thus, if graphs analogous to those presented in Fig.4 are constructed by means of the 
solution (3.4), then their form will be identical with the graphs in Fig.4 if for P-waves 
they were constructed at that time t, such that t,- t),= 1, and for S-waves at a time t, such 
that t, 1 ts = i. If graphs analogous to those presented in Fig.6 are constructed from the 
solution (3.4), then their form will be identical with the graphs of Fig.6, if they are con- 
structed at the time t, for P-waves and the time tr for S-waves such that t,- t,=fr--is. 

REFERENCES 

1. SLEPYAN L.I. and FISHKOV A.L.,The.problemof the propagation of a discontinuity at an inter- 
sonic velocity, Dokl. Akad. Nauk SSSR, 261, 6, 1981. 

2. SIMONOV I.V., On the behaviour of the solutions of dynamic problems in the neighbourhood of 
the edge of a slit moving at transonic velocity in an elastic medium, Izv. Akad. Nauk 
SSSR, Mekhan. Tverd. Tela, 2, 1983. 

3. SIMONOV I.V., Transonic flow around a thin solid by an elastic medium, PMM, 48, 1, 1984. 



786 

4. PAVLENKO A.L. and APIKYAN ZH.G., Supersonic flow around a stiff wedge by a linearly elastic 
medium, Izv. Akad. Nauk UsbekSSR, Ser. Tekh. Nauk, 2, 1969. 

5. BORZYKH A.A. and CHEREPANOV G.P., On the theory of the fracture of solids subjected to 
powerful electron beam pulses, PMN, 44, 6, 1980. 

6. BORZYKH A.A., A spatial selfsimilar problem on the supersonic cleavage of an elastic body, 
PMM, 45, 2, 1981. 

7. BYKOVYSEV G.I., KOLOKOL'CHIKOV A.V. and SYRGUNOV P.N., Selfsimilar solutions of the equations 
of the dynamics of an ideal elastic plastic body under Trescaplasticity conditions, Prikl. 
Mekhan. Tekh. Fis., 6, 1984. 

8. BYKOVTSEV A.S., Propagation of complex discontinuities with piecewise-constant and variable 
velocities along curvilinear and branching trajectories, PMM, 50, 5, 1986. 

9. BYKOVTSEV A.S., Modelling of fracture processes occurring in the focal zone of a tectonic 
earthguake,Proc. Intern. Conf. on Computational Mechanics, 1, Pt.3. Springer-Verlag, 
Berlin, 1986. 

10. MADARIAGA R., The dynamic field of Haskell's rectangular dislocation fault model, Bull. 
Seismol, Sot. Amer., 68, 4, 1978. 

11. BYKOVTSEV A-S., On wave fields produced by propagating dislocation discontinuities, Ex- 
perimental Seismology in Uzbekistan, Fan, Tashkent, 1983. 

12. BYKOVTSEV A.S. and KRANAROVSKY D.B., The displacement field produced by the propagating 
rectangular rupture plane: The exact three-dimensional solution, Froc. Intern. Conf. on 
Computational Mech., 2, 6, Springer-Verlag, Berlin,_1986. 

13. BYKOVTSEV A.S. and KRAMAROVSKII D-B., On the propgation of a complex fracture area, Exact 
three-dimensional solution, PMM, 51, 1, 1987. 

14. CAGNIARD L., Reflection and Refraction of Progressive Seismic Waves, McGraw-Hill, New York, 
1962. 

15. ABRAMOWITZ M. and STIGAN I.M., Eds. Handbook on Special Functions with Formulas, Graphs and 
Mathematical Tables, Nauka, Moscow, 1979. 

Translated M.D.F. 

Pm U.S.S.R.,Vo1.53,No.6,pp.786-790,1989 0021-8928/89 $lO.OO+O.OO 
Printed in Great Britain 01991 Pergamon Press plc 

MOMENT THEORY OF ELECTROMAGNETIC EFFECTS IN ANISOTROPIC SOLIDS* 

I.G. TEREGULOV 

A moment (polar) theory of deformable solids is constructed for 
anisotropic media such as polarisable piezoelectric ceramics. The 
linear theory is considered in detail and an explanation of the 
non-linear change in the electric field inside a polarized piesoelectric 
material (the Mead effect) is given. The classical theory of 
electromagnetic effects in solids does not enable certain observed 
effects to be described (for example, the Mead effect /I/). Attempts to 
eliminate this drawback of classical theory /2, 3/ rest on the 
introduction of the polarization gradient into the enthalpy as a 
parameter of the process. Models of complex media which takes into 
account the internal mechanical and electromagnetic moments have been 
constructed in electrodynamics (for example /4, 5/) when electromagnetic 
fields interact with the medium. Below, a solution of the problem is 
given and an example of a natural description of the Mead effect is 
presented. 

Suppose xi(i = 1, 2, 3) is a Lagrange system of coordinates frozen into a medium which 
occupies a volume V with a boundary S. The vector r(zi, t), defines the position of a point 
of this medium with respect to a fixed inertial system y", where t is the time. The vector 
r* = r + "(li, t) defines the position of material points of the medium after strain, where u 
is the displacement vector. Further constructions which are carried out have the purpose of 
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